Report - Bitcoin Track - Team CryptoWall

Team members: Tae Kun Kim, Johnny Liu, William Luu, Ester Tsai
Completed on: April 11, 2021

Table of Contents

I. Intro

II. Data Cleaning/Pre-processing
III. Visualizations (Q2a)
IV. Analysis (Q3, 4, 5)

V. Proposal - Hypothesis/Experimental Testing (Q2b)
VI. Conclusion

Intro

This report details how Team CryptoWall pre-processed, visualized, analyzed, and concluded the
dataset for ransomware payments in the Bitcoin network between the years 2009 and 2018. The
goals are to: 1) “Determine the top three ransom labels that have the most ransom transactions”;
2) “Define a machine learning model most appropriate for classifying heist incidents into
ransomware families”; and 3) “Define a model to predict: a. If a future transaction is ransom or
not, and if it is, b. The ransomware family it belongs to”.

Data Cleaning/Pre-processing

Before we began cleaning the data, we had to understand the features variables and what each
column represents. The main variable of interest is the label column that represents the label of
the transaction. We can group them by “white” label where the transaction is not likely to be
ransomware and “non-white” labels that have the known to be a specific ransomware family.

Taking a general glance at the dataframe, we noticed that counts are either one or a significantly
larger integer. We took the average of the counts for each ransomware family and noticed that
white labels on average would have significantly less counts than non white labels. We
interpreted this trend in the sense that it was more likely a ransomware transaction would contain
more information than a non-ransomware transaction. It is most likely that ransomware
transactions would need more information because of the multiple inputs it must take from the
weights feature.

Mean Count by Bitcoin Label Median Count by Bitcoin Label

EDA2 1 EDA2 1
XLocker 4 XLocker 1
WannaCry 1 WannaCry
Jigsaw 1 XTPLocker 1
XTPLocker 1 Jigsaw 1
APT 1 APT 1
XLockervs.0 ComradeCircle §
Globe 1 Globev3 1
Globev3 KeRanger
ComradeCircle 1 Razy 1
Locky 1 CryptoWall 1
SamSam 1 DMALocker 4
DMALocker 1 XLockerv5.0 1
DMALockerv3 DMALockerv3
g CryptConsole %’ Cerber -
a CryptXXXx 1 CryptConsole 1
Razy 1 CryptXXX
Cerber 1§ Cryptolocker
white 1 CryptoTorLocker2015 1
Globelmposter 1 VenusLocker
CryptoWall 1 NoobCrypt q
KeRanger 1 Flyper
Flyper Globe 1
NoobCrypt 1 Globelmposter 1
Cryptolocker 1§ SamSam 1
CryptoTorLocker2015 1 JigSaw
JigSaw Sam
VenusLocker § Locky 1
Sam A white

0 1000 2000 3000 4000 5000 6000 0 2000 4000 6000 8000

Mean Count Median Count

We also noticed that the weights average was slightly higher for non-white labels compared to
white labels we found the label “Razy” to be a massive outlier bringing the average weight
higher for non-white. However even after finding the average of non-white weights without
Razy, the weight average was still significantly higher for ransomware families as seen in the
figure below. The median reduces the extremity of the outliers yet we still see that most of the
ransomware families have a larger weight.

Since we notice that it is more likely that amount of information on ransomware transaction is
larger than non-ransomware transactions and that the ransomware transactions will usually have
more merging of multiple addresses than non-ransomware transactions, we hypothesize that
those two features would have an impact when trying to identify if a ransomware transaction is
ransom or not. This could be due to how tracking down ransomware transactions is harder if it is
coming from multiple addresses being merged together hence why there is so much information
on it. We would keep these trends in consideration when developing our models.

Mean Weight by Bitcoin Label Median Weight by Bitcoin Label

Razy NoobCrypt
CryptoTorLocker2015 Razy
DMALocker CryptoTorLocker2015
Cryptolocker Jigsaw
NoobCrypt XLockerv5.0
CryptoWall WannaCry
‘WannaCry Flyper
CryptConsole Globelmposter
SamSam CryptoWall
Globelmposter DMALocker
DMALockerv3 DMALockerv3
white Cryptolocker
Jigsaw SamSam
APT CryptConsole
'_BU XLockerv5.0 '_.Eé XLocker
Globe Globe
Flyper APT
Globev3 JigSaw
KeRanger KeRanger
JigSaw white
XlLocker XTPLocker
XTPLocker Locky
Locky CryptXXxX
CryptXXX Globev3
Cerber Cerber
EDA2 EDA2
VenusLocker Sam
Sam ComradeCircle
ComradeCircle enusLocker

0 10 20 20 a0 00 02 04 06 08 10

Mean Weight Median Weight

However, the data suffers from a strong imbalance of classes in the dataset, as typical when
trying to identify trends among fraudulent transactions. As seen in the figure below, about 98.5%
of the dataset describes “white” transactions, while only about 1.5% described features of
ransomware transactions.

16 Comparison of Dataset Category Sizes

20 1

15

Entries

10

05 1

00 - T
White Ransomware

An imbalance such as this will result in a machine learning algorithm that tends to solely predict
“white” for all instances of transactions and receive a high accuracy purely due to the split of
classes in the data rather than analyzing trends. Since “white” transactions were usually in the
middle of the pack for the mean distribution of features, as well as the overall large dataset size,
we decided to solve this imbalance by under-sampling. Thus, we decided to under-sample the
majority class, in this case the “white” transactions, so both classes would have equal dataset
sizes.

Visualizations for Trends and Patterns
(1) Using boxplot of “Count by Label” to distinguish the labels

Count by Label (Sorted By Descending Median Count)

EDA2 i
XLocker |
WannaCry 1 I
XTPLocker — I —
Jigsaw |
»T s T i
ComradeCircle |
Globev3 [
KeRanger O« *
DMALocker L ¢ oot b me 400 0 400 00 M0 G U '
Razy I+ .)
CryptoWall —3 L T TR AT TN] ‘
Mockervs.0 | — +
QryptConsole ———
z CryptxxX - oM X .
CryptoLocker LX T) [INTNY
VenusLocker |
SamSam] N R) ‘e L) ¢
Sam |
Locky | — IR L] " I T] X
NoobCrypt LT IT TR U RN Y Hooree o
DMALackerv3] L T T Y I I Y Y B S '}
CryptoTorLocker2015 » "
JigSaw »
Cerber Ty T TR Y) +
Globelmposter I+ (EX} ‘e 1)
Globe [
Flyper | +
white I -
0 2000 4000 6000 8000 10000 12000 14000

ount

We used multiple box-plots for each label in the dataset to find the general trend of the
distribution of the median count in descending order. The count is an important variable in
determining if a transaction is ransom or not and which ransomware transaction it may fall under.
The box-plot is an important EDA tool to see the location of the spread of the first and third
quartile where ~50% of the counts would usually lie. When the median is in descending order, it
is easier to detect the variation of how the counts are distinguished between each other. We
noticed that most of the ransomware labels have lots of outliers that may have caused skews in
the mean and median that the previous histograms may not have captured.

(2) Using “day” to distinguish white from non-white labels

day
day

1600 A

30000 1
1400

25000 1
1200 A
20000 1000 -
15000 800 1
600

10000 1
400 1

5000 A
200

0 A

o

] 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350

The histogram makes it easier to distinguish when most of the transactions take place to see if
there is a significant difference of when a ransom or non-ransom transaction takes place.

The top histogram conveys when all the non-ransomware transactions in the dataset took place,
with the number of days on the x-axis for the chronological reading order and the y-axis is the
number of transactions that took place that day. We originally believed that the ransomware

transactions would take place towards the far right of the histogram where the holidays usually
are and there is more financial traffic. However, the distribution of transactions is steady
throughout the year with a short dip at the end of the year.

The bottom histogram is formatted the same as the above histogram however, it is only
measuring the ransom transactions. We notice that the ransom transactions distribution is not as
consistent as the non-ransom transactions and is more popular during certain periods of the year.
This trend helps visualize how the days in which a transaction takes place will help our model
predict whether a transaction is ransom or not.

(3) Using “looped” to distinguish the labels

Mean Looped by Bitcoin Label

WannaCry
Globe
DMALocker
XTPLocker
white

Razy

Globev3
Cryptowal
DMALockerv3
Cryptolocker
SamSam
Locky
Globelmposter
NoobCrypt
CryptXXx
Cerber
CryptoTorLocker2015
Sam

label

KeRanger
T
MLockerv5.0

CryptConsole
ComradeCircle
Jigsaw

EDA2

0 100 200 300 400 500 00
Mean Looped

The barchart of “Mean Looped by Bitcoin Label” suggest that labels like “WannaCry”, “Globe”,
and “DMALocker” have a significantly higher mean looped than the other labels, while twelve
of the labels have a mean looped of zero meaning some ransomware labels have more
transactions of splitting coins, moving them and merging to a single address. Such significant
differences can play a big role in helping to predict the label.

Analysis
[Q3]

To find the top 3 ransom labels that have the most ransom transactions, we look at all the labels
that are not labeled “white” because a “white” label is not known to be ransomware so we can
not assume that all white labels are ransomware. Solely just finding the number of times each
label is an instance of an overall transaction. However, since each entry of the data of the edge is
an edge of a transaction graph so each entry is the result of one or multiple transactions to reach
the final receiver. Therefore in descending order, the top 3 ransom labels are Locky, Cerber and
CryptoWall as seen in the figure below.

In [38): df_train.loc[(df_train["label”] != "white’)].groupby(”latel”).sum().sort_values{ counl', ascending = False)

e Unnamad: 0 year day langth welght count looped nslghbors Income
labsl
Locky 6231904185 10725154 705150 25324E 1060428568 5542528 JB1585 GE22 1.37084Be+12
Cerber BT4BAS3390 14862627 1350023 265344 2334 ASG0TE 5402457 42717 14840 7.618505e+11
Cryptowall 11610126814 10884772 1401304 472732 TRAZ 420380 4108413 1207754 19718 EASGEETe+12
CryploLocker BESIETAEAT 14940B53 17EI5SE 225048 65000520377 2244003 754020 21180 1.32EZ52e+12
CrypbOOX 2204908251 SACED0E 324507 G2ITD TOB4ZIZ4E 1535356 128131 3865 2.EDEB44e+11
DMALockenv 343E4E020 SE4774 §7213 10744 160709804 277538 0Ne 333 1.728931e+11
DMALockar 2e01E152 AZEI00 FBES] a416 204611220 205528 102274 384 1.B5E0A3e+11
NocbhCrypt 438TEITIE TE1TE8 BL37T #1686 I2B269803 123351 20060 503 B.74583Be+10
WannaCry 2B227174 4a408 21 2347 153B3665 106545 13690 41 14738580408
2am3am 48301370 0T34 QBaG 1754 26661620 45608 2377 BT 4874155410
Globevs IB1E3ZH 8450 S0SE 1684 12 360396 3a7E4 5147 B1 3.3B7741e+05
Globe 2895751 44356 SE92 1068 10.753404 31348 10897 47 1.GEERS5e+05
KTPLockar SA21053 14112 1463 T24 27064 20620 2286 10 1.909547Te+05
EDAZ Faz15483 G050 456 294 D.IEE02E 19378 o 4 1.115830e+08
Globedmposbar 4370092 72554 aive 1078 18906560 18007 e B8 2.T03580e+10
APT 11449145 16131 1200 5492 4243235 14438 i 18 2940Z5Te+00
Razy 13080104 G184 3625 424 58183THME 98&3 2587 133 2 98667Te+12
¥lockervi 0 5131513 a0GE 138 148 2 0E3%52 6332 o 5 B9%975Te+0E
CryptConscis Eaz5394 14115 67 04 4153142 5822 b 14 3182434e+08
KLockar 731000 2017 144 144 0412207 4511 o 1000000+ 08
Jigzaw 913387 2016 120 144 0542603 3817 o 2 4 200000e+07
KeRangar 5200150 16128 579 358 3479877 34T Z B 79%3000e+08
Flypar S280234 14118 2092 162 3.119608 2818 o 1 3830065e+08
CryptoTorLocker2il s Sea4TTaZ S4T08 TE12 5356 58.141865 2857 1357 484 338E135e+10
ComradaCircls 1511448 2018 93 144 0051214 1241 o 2 2033300e+08
Jig gaw 3272817 abad B33 26 1662431 10 o B 2584837e+0B
WanuesLockar 5614203 12101 544 198 DU5B2340 B b S E.000000e+08
Zam 1E017D 2016 27 & DL0E2500 3 2900000e+05%

[Q4]

Next, to define a model that would be appropriate to classify heist incidents into ransomware
families, we decided to use a Decision Tree Classification model.

To make this model work, we processed the training data by removing all the rows with label ==
‘white’, then removed the column ‘Unnamed: 0, so all the remaining columns (except for
‘address’) are useful quantitative features. Since the column at index 9 is the ‘label’, that column
reasonably became y_train, while the columns at indices 1 to 8 of the training data became
X_train, and the columns at indices 1 to 8 of the testing data became x_test. Column at index 0
(‘address’) was excluded from the features because ‘address’ was not a feature we wanted to use.

After processing the data, we put x_train and y_train into a DecisionTreeClassifier and made
predictions for x_test. After removing the feature columns, the result looked something like this:

address predicted_label

0 16r8CxcVCypUFzvHHZ Y ttyiZtMaGnn3te CryptoLacker
1 12EK9jUdG3heM7AF6Abyp38yuNMHN4deg1 Locky
2 16xUAFderxZwbEp9yuz4FdPnMVxTQntcwN Cerber
3 1vUtTUUD ey 7Y TWYHNTBSUNuhg1Vkbdfd CryptoLocker
4 138BLKDpeNyKdHnrLT8hZMW119sD4PZJ6D CryptoWall
583335 123UBHgTRAuGkP5ATWISWegVyibLNATU1D Locky
583336 10rPsCAchyjgsgeN37T7TNtym3Ch1xSRZyYw Locky

583337 1MKZQMPKINIC25yJSqSXZPmaYQVZnWnCTT CryptoLocker
583338 39fBLaBJEXSE6YMIL4sTEjJAkoSErpFVTpK DMALockerv3
583339 19QwMNP5eb2kGH 1u2ckHnjcRuSwhf2dUxD CryptaWall

where ‘predicted label” shows which ransomware the DecisionTreeClassifier classified the
transaction to be. The issue with the above result is that the model was trained so that it cannot
classify a transaction as white, which meant all the transactions in the testing data that should be
classified as white were classified as ransomware. However, this would not be an issue if the
testing data consists of only ransom transactions.

EXTRA NOTES:
Ranking the features in terms of their influence on Decision Tree Classification accuracy

Decision Tree Accuracies for Individual Features

Jear 07368

income 05629

day 0.4639

reighbors 0 4442

Feature

‘count 03416

weight 03167

ength 02965

|ooped 0.2933

00 01 02 03 04 05 06 07
feature

The Bitcoin dataset has eight features that can be used to train a Decision Tree Classification
model: year, income, day, neighbors, count, weight, length, and looped.

To find out which feature has the most influence on the ransomware family classification of a
transaction, we created a table containing just the feature and the label for each of the eight
features, then trained a different Decision Tree Classification model for each table. The resulting
list of accuracies is sorted to show a pattern.

[Q5]

Our model to determine whether a transaction was “white” or ransomware involved renaming
the labels to 0 if white, 1 if not. In addition, we also temporarily dropped the address column as
we believed this categorical variable would be too complicated for the model to use as a
predictive feature. We used the ktrain package, a wrapper for the deep learning library
Tensorflow Keras to standard predictive features and predict whether a transaction was white or
ransomware.

Proposal

Hypothesis:
A ransom transaction is more likely to have a higher ‘count’ than a white transaction, since a
ransom transaction has an incentive to have more starter transactions connected to a ransom

address.

Experimental Testing:
Find the percentage of the times a randomly selected ransom transaction has a greater count than

a randomly selected white transaction.

Count Difference Distribution (ransom - white)

20 4

10 4

-8000 -6000 -4000 ~2000 0 2000 4000 6000
Count Difference (ransom - white)

Experimental Testing conclusion:

percentage ransom_greater_count than white = np.sum(np.array(differences) > @, axis=@) / len(differences)
percentage ransom greater count than white

8.37
About 37% of the differences are positive, meaning that only about 37% of the times a randomly
selected ransom transaction has a greater count than a randomly selected white transaction. We
reject the null hypothesis because we do not have significant evidence that a ransom transaction
is more likely to have a higher ‘count’ than a white transaction.

Conclusion.

After running our model to determine whether transactions are ransom or not, our model
predicted that out of the 583,340 transactions in the test data set, 127,699 transactions were
considered to be ransom transactions. The three most predicted ransomware families were
Cerber, CryptoLocker, and Locky, which isn’t too far off the training data frequency. However,
some families with low initial frequency in the training data, such as Jigsaw and Sam, were not
predicted by our model. This is probably due to low representation in the training data. While
having data of equal proportions of class representation would be ideal, real world data is not
cleanly distributed. It is important to process data well to result in proper application to analysis
methods.

